Enhancing Lifetime in Wireless Sensor Networks Using Muliple Base Stations And Cooperative Diversity

A. P. Azad

January 2006

(Research Supervisor Prof. A. Chockalingam)

Wireless Research Lab: http://wrl.ece.iisc.ernet.in

Department of Electrical Communication Engineering

Indian Institute of Science

Bangalore - 560012. INDIA

Outline

- Introduction
- Single vs Multiple Base Stations
- Network Lifetime Enhancement using Multiple BSs
 - Bounds on Network Lifetime
- Optimum Base Stations Placement Algorithms
 - Top- $\{K_{max}\}$ Algorithm
 - Max-Min-RE Algorithm
 - MinDiff-RE Algorithm
- Cooperative Diversity
- Conclusions

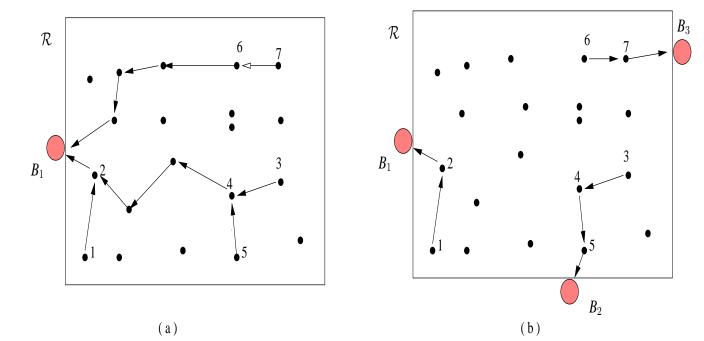
Introduction

- Wireless sensor networks
 - sensor nodes typically distributed in remote/hostile sensing areas
 - nodes powered by finite energy batteries
 - batteries not easily replaced/recharged
 - depletion of battery energy can result in
 - * a change in NW topology or
 - \ast end of NW life itself
- Key issues in wireless sensor networks
 - Network lifetime
 - amount of useful data successfully transferred during NW lifetime
- Enhancing NW lifetime is crucial

Data Transport Model

- A base station (BS) is typically located at the boundary of or beyond the field/area in which sensors are distributed
- BS collects data from the sensor nodes
- Sensor nodes act as
 - source nodes that generate data to be passed on to the BS
 - intermediate relay nodes to relay data from other nodes towards the BS on a multihop basis
- Consequence of sensor nodes acting as relays
 - energy spent by nodes may not contribute to end-to-end delivery always (e.g., packets may still have more hops to reach the BS)
 - this results in reduced NW lifetime and efficiency in terms of total amount of data delivered to BS per joule of energy
 - affects more when number of hops between sensor node(s) to BS gets larger

Multiple Base Stations


- NW lifetime can be enhanced by the use of *multiple BSs*
 - deploy multiple BSs along the periphery/boundary of the sensing field/area
 - allow each BS to act as a data sink, i.e.,
 - * each sensor node can send its data to any one of these BSs (may be to the BS towards which the cost is minimum)
 - BSs can communicate among themselves to collate the data collected
 - * energy is not a major concern in the communication between BSs
- Deploying multiple BSs essentially can reduce the average number of hops between the source-sink pairs
 - can result in enhanced lifetime / amount of data delivered

I. Limits on NW Lifetime?

- Several works have reported bounds on the NW lifetime for single BS scenario
 - Bhardwaj et al., IEEE ICC'2001
 - Bhardwaj and Chandrakasan, IEEE INFOCOM'2002
 - Zhang and Hou, ACM Mobihoc'2004
 - Blough and Santi, Mobicom'2002
 - Arnon S., IEEE Commun. Letters, Feb'2005
 - Gandham, Dawande, Prakash and Venkateshan, Globecom '2003
- Our contribution
 - derive upper bounds on NW life time when multiple BSs are deployed
 - obtain optimum locations of the BSs that maximize these lifetime bounds

• Network

- # sensor nodes: N, # base stations: K

Figure1: A sensor network over a rectangular region of observation \mathcal{R} with three base stations B_1, B_2, B_3 . Node 1 sends its data to base station B_1 via node 2. Node 3 sends its data to B_2 via nodes 4 and 5. Node 6 sends its data to B_3 via node 7. However in Single base station case data has to travel more no. of hops.

- Node Energy Behaviour
 - key energy parameters are energies needed to
 - * sense a bit (E_{sense}) , receive a bit (E_{rx})
 - st transmit a bit over a distance d, (E_{tx})
- Assuming a d^{η} path loss model,

$$E_{tx} = \alpha_{11} + \alpha_2 d^{\eta}, \quad E_{rx} = \alpha_{12}, \quad E_{sense} = \alpha_3,$$

- α_{11}, α_{12} : energy/bit consumed by the Tx, Rx electronics
- α_2 : accounts for energy/bit dissipated in the Tx amplifier, α_3 : energy cost of sensing a bit
- Typically, $E_{sense} << E_{tx}, E_{rx}$.
- Energy/bit consumed by a relay node is

$$E_{\text{relay}}(d) = \alpha_{11} + \alpha_2 d^{\eta} + \alpha_{12} = \alpha_1 + \alpha_2 d^{\eta}$$

where $\alpha_1 = \alpha_{11} + \alpha_{12}$

- Node energy behaviour
 - If r is the # bits relayed per sec, the energy consumed per sec (i.e., power) is

$$P_{\text{relay}}(d) = r \cdot E_{\text{relay}}(d)$$

- The following energy parameters are used [Bhardwaj et al, ICC'2001], [Heinzelman Ph.D Thesis, MIT, 2000]:
 - $\alpha_1=180$ nJ/bit

–
$$lpha_2=10$$
 pJ/bit/ m^2 (for $\eta=2$) or 0.001 pJ/bit/ m^4 (for $\eta=4$).

Battery / Network Lifetime

- *E*_{battery} Joules: Battery energy available in each sensor node at the initial deployment
- A sensor node ceases to operate if its battery is drained below a certain usable energy threshold
- Network lifetime definitions, e.g.,
 - time taken till the first node to die we use this definition in the derivation of NW lifetime upper bound
 - time taken till a percentage of nodes to die
- Given \mathcal{R} , N, E_{battery} , ($\alpha_1, \alpha_2, \alpha_3$) and η , we are interested in
 - deriving bounds on the network lifetime when K, $K \ge 1$ base stations are deployed as data sinks along the periphery of the observation region \mathcal{R}
 - obtaining optimal locations of the base stations

Minimum Energy Relay

- Bounding NW lifetime involves the problem of establishing a data link of certain rate *r* between a sender (*A*) and destination (*B*) separated by distance *D* meters
- Two ways of doing this
 - direct transmission from A to B (in a single hop), or
 - using several intermediate nodes acting as relays (multihop)
- A scheme that transports data between two nodes such that the overall rate of energy dissipation is minimized is called a *minimum energy relay*
- If M-1 relays are introduced between A and B, i.e., M links between A and B (see Fig.), the overall rate of dissipation is

$$P_{\rm link}(D) = \sum_{i=1}^{M} P_{\rm relay}(d_i) - \alpha_{12},$$

where d_i is the inter-node distance of the *i*th link.

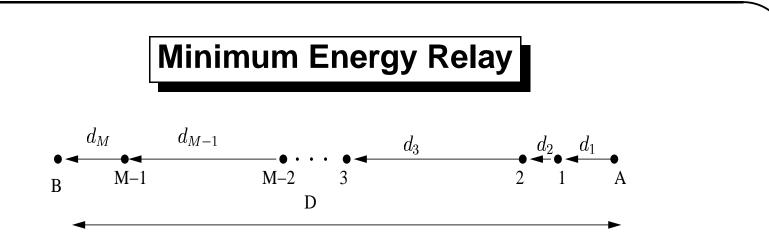


Figure 2: M - 1 relay nodes between points A and B

- *Theorem:* Given D and the number of intermediate relays (M 1), $P_{link}(D)$ is minimized when all hop distances (i.e., d_i 's) are made equal to D/M.
- So, optimum number of hops (links) is the one that minimizes $MP_{\text{relay}}(D/M)$, and is given by

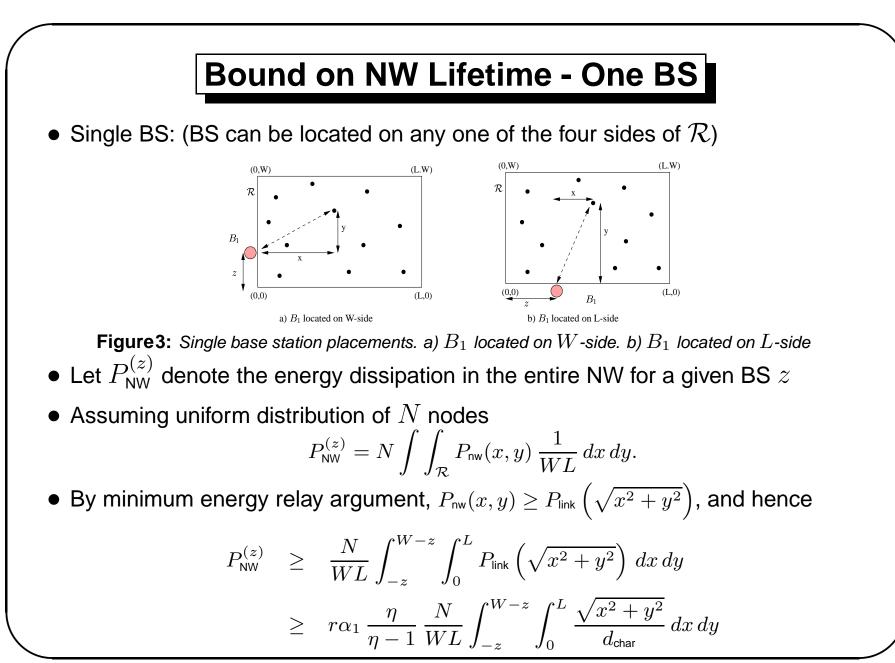
$$M_{opt} = \left\lfloor \frac{D}{d_{char}} \right\rfloor \quad \text{or} \quad \left\lfloor \frac{D}{d_{char}} \right\rfloor,$$

where

$$d_{\mathsf{char}} = \sqrt[\eta]{rac{lpha_1}{lpha_2(\eta-1)}}$$

Minimum Energy Relay

 $\bullet\,$ Energy dissipation rate of relaying a bit over distance D can be bounded as


$$P_{\rm link}(D) \, \geq \, \left(\alpha_1 \frac{\eta}{\eta - 1} \frac{D}{d_{\rm char}} - \alpha_{12} \right) r$$

with equality iff D is an integral multiple of $d_{\rm char}$

• Power dissipated in the network is always larger than or equal to the sum of this $P_{\rm link}(D)$ and the power for sensing, i.e.,

$$P_{\rm nw} \geq P_{\rm link}(D) + P_{sense} \geq \left(\alpha_1 \frac{\eta}{\eta - 1} \frac{D}{d_{\rm char}} - \alpha_{12}\right) r + \alpha_3 r$$

• As an approximation, sensing power can be ignored since the power for relaying data dominates.

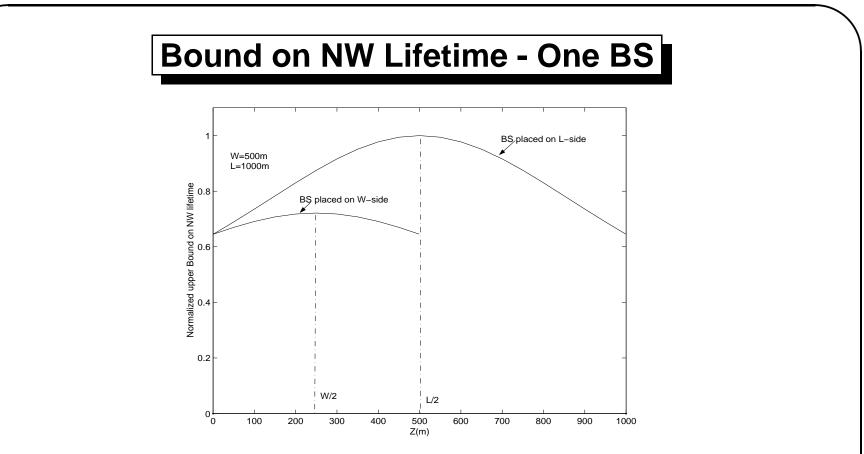
Bound on NW Lifetime - One BS

- Achieving NW lifetime demands that energy consumed in the NW to be no greater than $NE_{\rm battery}$
- Denoting $\mathcal{T}_{\text{one-BS}}^{(z)}$ as the NW lifetime with one BS at a given location z, we have

 $P_{\rm NW}^{(z)} \, {\cal T}_{\rm one-BS}^{(z)} \, \leq \, N E_{\rm battery}$

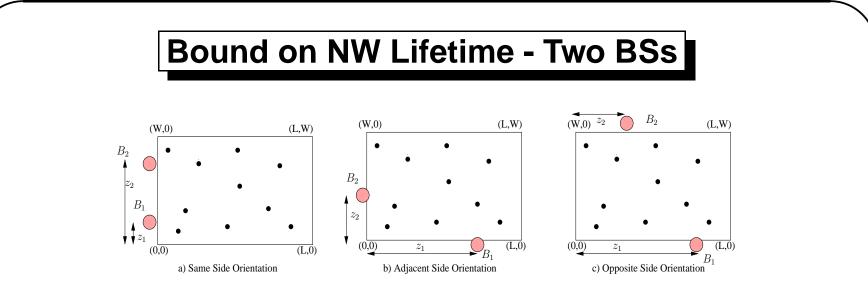
• An upper bound on the NW lifetime for a given BS location z is then given by

$$\mathcal{T}_{\text{one-BS}}^{(z)} \leq \frac{NE_{\text{battery}}}{P_{\text{NW}}^{(z)}}$$


• Optimal placement of the BS on the W-side can be obtained by choosing the z that maximizes the lifetime bound in the above, i.e.,

$$z_{ ext{opt}}^{(W)} = rac{\operatorname{argmax}}{z \in (0,W)} \ \ \mathcal{T}_{ ext{one-BS}}^{(z)}.$$

• Performing the above maximization, the optimal BS location is obtained as


$$z_{opt}^{(W)} = W/2,$$

15

Figure4: Normalized upper bound on network life time as a function of base station location for L = 1000 mand W = 500 m

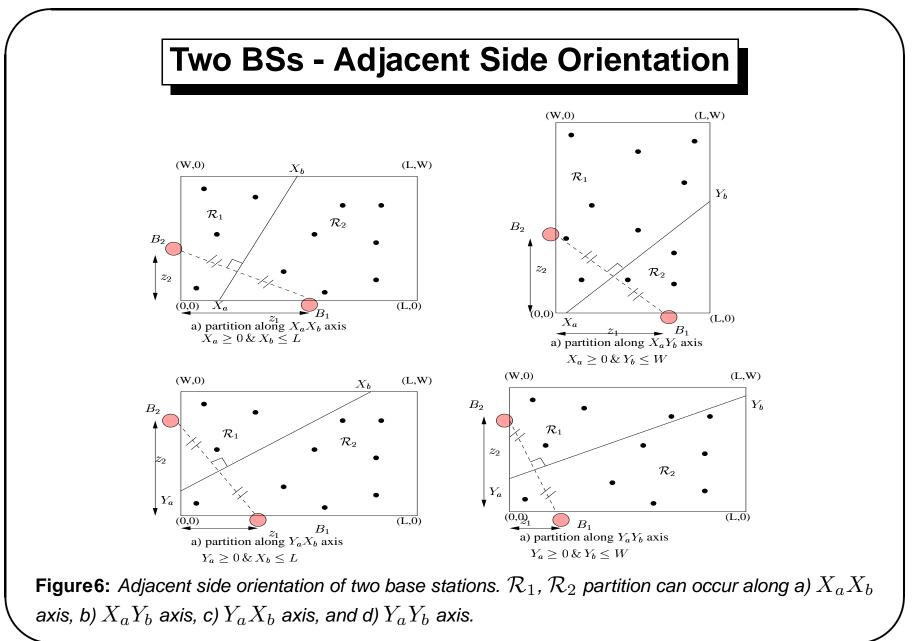

• Optimum BS location is midpoint of L-side if L>W (midpoint of W-side if $L\leq W$)

Figure5: *Placements of two base stations. a) Same side orientation, b) adjacent side orientation, and c) opposite side orientation*

- Each node in the NW must be associated with any one BS
 - can choose the BS towards which energy spent for delivering data is minimum (by min. energy relay argument, it could be the nearest BS)
- This results in the region ${\cal R}$ to be partitioned into two sub-regions ${\cal R}_1$ and ${\cal R}_2$
 - This partitioning will occur along the perpendicular bisector of the line joining B_1 and B_2

17

Two BSs - Adjacent Side Orientation

• The axis partitioning \mathcal{R}_1 and \mathcal{R}_2 is represented by the straight line

$$Y = mX + c,$$
 $m = \frac{z_1}{z_2}$ and $c = \frac{z_2^2 - z_1^2}{2z_2}$

$$X_{a} = X|_{Y=0} \implies X_{a} = -\frac{c}{m} = \frac{z_{1}^{2} - z_{2}^{2}}{2z_{1}}, \quad X_{b} = X|_{Y=W} \implies X_{b} = \frac{W - c}{m} = \frac{W z_{2}}{z_{1}} - \frac{z_{2}^{2} - z_{1}^{2}}{2z_{1}}$$
$$Y_{a} = Y|_{X=0} \implies Y_{a} = c = \frac{z_{2}^{2} - z_{1}^{2}}{2z_{2}}, \quad Y_{b} = Y|_{X=L} \implies Y_{b} = mL + c = \frac{Lz_{1}}{z_{2}} + \frac{z_{2}^{2} - z_{1}^{2}}{2z_{2}}$$

• Partition axis type is

$$\begin{array}{l} i) \ X_a X_b \ \text{if} \ X_a \geq 0 \ \text{and} \ X_b \leq L \ \text{(Fig. (a))}, \\ ii) \ X_a Y_b \ \text{if} \ X_a \geq 0 \ \text{and} \ Y_b \leq W \ \text{(Fig. (b))}, \\ iii) \ Y_a X_b \ \text{if} \ Y_a \geq 0 \ \text{and} \ X_b \leq L \ \text{(Fig. (c))}, \ \text{and} \\ iv) \ Y_a Y_b \ \text{if} \ Y_a \geq 0 \ \text{and} \ Y_b \leq W \ \text{(Fig. (d))} \end{array}$$

Two BSs - Adjacent Side Orientation

• Energy dissipation in the entire NW with BS locations z_1 and z_2 for ASO case

$$P_{\mathrm{NW,aso}}^{(z_1,z_2)} = N\left(\int \int_{\mathcal{R}_1} P_{\mathrm{nw}}(x,y) \,\frac{1}{WL} \, dx \, dy + \int \int_{\mathcal{R}_2} P_{\mathrm{nw}}(x,y) \,\frac{1}{WL} \, dx \, dy\right)$$

• By minimum energy argument, $P_{\text{nw}}(x,y) \ge P_{\text{link}}\left(\sqrt{x^2 + y^2}\right)$, and hence

$$P_{\text{NW,aso}}^{(z_1, z_2)} \geq \frac{r\alpha_1}{d_{\text{char}}} \frac{\eta}{\eta - 1} \frac{N}{WL} \left(d_{\text{2-BS,aso}}^{\mathcal{R}_1}(z_1, z_2) + d_{\text{2-BS,aso}}^{\mathcal{R}_2}(z_1, z_2) \right)$$

where

$$d_{2\text{-BS,aso}}^{\mathcal{R}_{1}}(z_{1}, z_{2}) = \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} \sqrt{x^{2} + y^{2}} \, dx \, dy + \int_{y_{3}}^{y_{4}} \int_{x_{3}}^{x_{4}} \sqrt{x^{2} + y^{2}} \, dx \, dy$$
$$d_{2\text{-BS,aso}}^{\mathcal{R}_{2}}(z_{1}, z_{2}) = \int_{x_{5}}^{x_{6}} \int_{y_{5}}^{y_{6}} \sqrt{x^{2} + y^{2}} \, dy \, dx + \int_{x_{7}}^{x_{8}} \int_{y_{7}}^{y_{8}} \sqrt{x^{2} + y^{2}} \, dy \, dx$$

	For	For	For	For
Limits	$X_a X_b$ axis	$X_a Y_b$ axis	$Y_a X_b$ axis	Y_aY_b axis
	Fig.(a)	Fig.(b)	Fig.(c)	Fig.(d)
(x_1, x_2)	$(0, X_{z_2})$	$(0, X_{z_2})$	$(0, X_{z_2})$	$(0, X_{z_2})$
(y_1,y_2)	$(-z_2,$	$(-z_2,$	$(Y_a - z_2,$	$(Y_a - z_2,$
	$W-z_2)$	$Y_b - z_2$)	$Y_b - z_2$)	$W-z_2)$
(x_3, x_4)	(0,0)	(0,L)	(0,L)	(0,0)
(y_3,y_4)	(0,0)	$(Y_b - z_2,$	$(Y_b - z_2,$	(0,0)
		$W-z_2)$	$W-z_2)$	
(x_5, x_6)	$(X_a - z_1,$	$(X_a - z_1,$	$(-z_1,$	$(-z_1,$
	$X_b - z_1$)	$L-z_1)$	$L-z_1)$	$X_b - z_1$)
(y_5,y_6)	$(0,Y_{z_1})$	$(0,Y_{z_1})$	$(0,Y_{z_1})$	$(0, Y_{z_1})$
(x_7, x_8)	$(X_b - z_1,$	(0,0)	(0,0)	$(X_b - z_1,$
	$L-z_1)$			$L-z_1)$
(y_7,y_8)	(0,W)	(0,0)	(0,0)	(0,W)

Table I: Values of limits y_1, y_2, \cdots, y_8 and x_1, x_2, \cdots, x_8 for various partition axis types in Figs. (a), (b), (c), (d)

21

Two BSs - Bound on NW Lifetime

• An upper bound on lifetime for a given z_1, z_2 and ASO can be obtained as

$$\mathcal{T}_{2\text{-BS,aso}}^{(z_1, z_2)} \leq \frac{NE_{\text{battery}}}{\frac{r\alpha_1}{d_{char}} \frac{\eta}{\eta - 1} \frac{N}{WL} \left(d_{2\text{-BS,aso}}^{\mathcal{R}_1}(z_1, z_2) + d_{2\text{-BS,aso}}^{\mathcal{R}_2}(z_1, z_2) \right)}$$

• Optimum locations of BSs for ASO is then given by

$$\begin{pmatrix} z_{1,\mathsf{opt}}, z_{2,\mathsf{opt}} \end{pmatrix}_{\mathsf{aso}} = \begin{matrix} \operatorname{argmax} \\ z_1 \in (0,L), \\ z_2 \in (0,W) \end{matrix} \quad \mathcal{T}^{(z_1,z_2)}_{\text{2-BS,aso}}$$

- Lifetime bounds for SSO and OSO are derived likewise
- Finally, optimum locations of the BSs are chosen from the best locations of ASO, SSO, and OSO cases, as

$$\begin{pmatrix} z_{1,\mathsf{opt}}, z_{2,\mathsf{opt}} \end{pmatrix} = \begin{array}{c} \underset{z_1 \in (0,L), \\ z_2 \in (0,W) \\ \mathsf{orient} \in \{\mathsf{aso}, \mathsf{sso}, \mathsf{oso}\} \end{pmatrix}^{z_1 \in (0,L),} \mathcal{T}^{(z_1,z_2)}_{\text{2-BS,orient}}$$

Two BSs - Numerical Results

• We obtained NW lifetime bound and optimum BS locations through optimization using genetic algorithm

Two Base Stations (Jointly Optimum)				
Orientation		NW life time	Optimal locations	
		Upper Bound	of B_1 , B_2	
		(# rounds)		
SSO	W side	18.28	(0, 121.3), (0, 381.5)	
	L side	31.36	(133.7, 0), (761.4, 0)	
ASO		32.60	(693.2, 0), (0, 263.6)	
OSO	W side	31.41	(0, 249.4), (1000, 251.2)	
	L side	32.99	(716.6, 0), (282.6, 500)	

Table II: Upper bounds on network lifetime and optimal base station locations. Two base stations.

Joint optimization. L = 1000m, W = 500m.

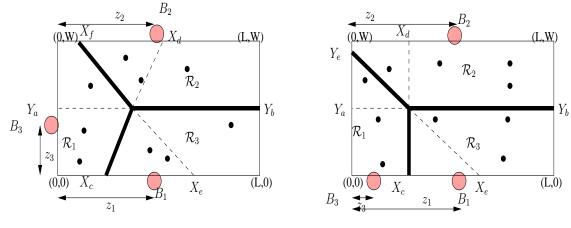
Two BS - Jointly vs Individually Optimum

- $\bullet\,$ The locations of B_1 and B_2 were jointly optimized
 - optimization complexity is high
 - becomes prohibitively complex for more number of base stations
- An alternate and relatively less complex approach is to individually optimize locations of B_1 and B_2 , i.e.,
 - fix B_1 at its optimal location obtained from the solution of one BS problem
 - then optimize the location of ${\cal B}_2$

24

Two BSs - Jointly vs Individually Optimum

Two Base Stations (Individually Optimum)				
Location of B_1 fixed at $(L/2,0)=(500,0)$				
Orientation	NW life time	Optimal location of B_2		
	Upper Bound			
	(# rounds)			
SSO	28.36	(164.9, 0)		
ASO	30.22	(0, 496.2)		
OSO	31.41	(502.5, 500)		


Table III: Upper bounds on network lifetime and optimum base station locations for two base stations.

 B_1 fixed at optimum location obtained from solving single BS problem. L = 1000m, W = 500m.

• Both jointly as well as individually optimum solutions results in OSO (opposite side orientation) deployments

Bound on NW Lifetime - Three BS

- Take the individually optimum approach (since less complex)
 - once locations of B_1 and B_2 are fixed, problem gets simplified to optimizing only over location of B_3

Adjacent Side with fixed : $z_1 = z_2 = L/2$

Same Side with fixed : $z_1 = z_2 = L/2$

Figure7: Placement of three base stations. B_1 and B_2 are placed at optimal locations obtained by solving the two base station problem. Location of B_3 is then optimized. a) B_3 on adjacent side of B_1 . b) B_3 on same side as B_1 .

Three BSs - Numerical Results

Location of B_1 fixed at (500,0)

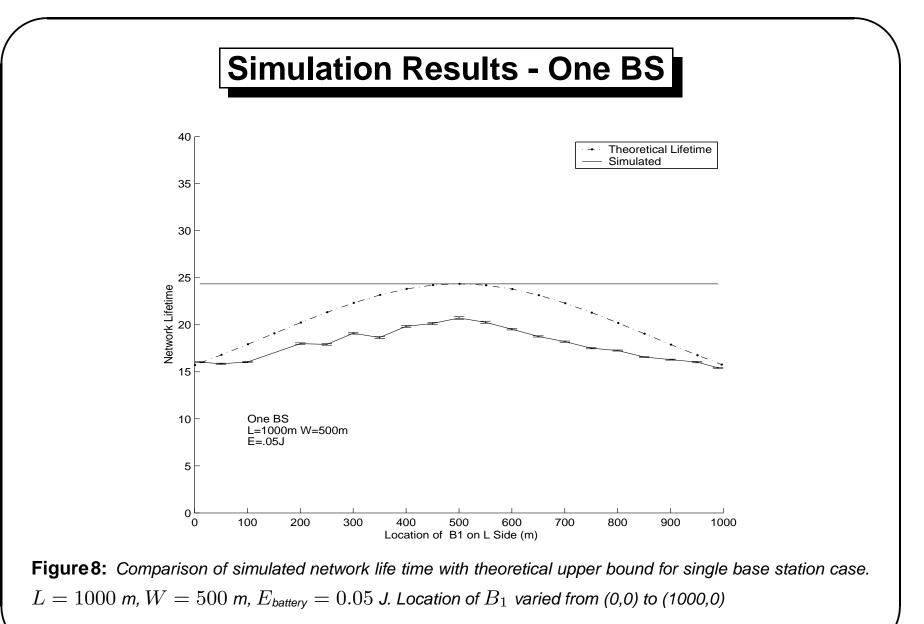
Location of B_2 fixed at (500,500)

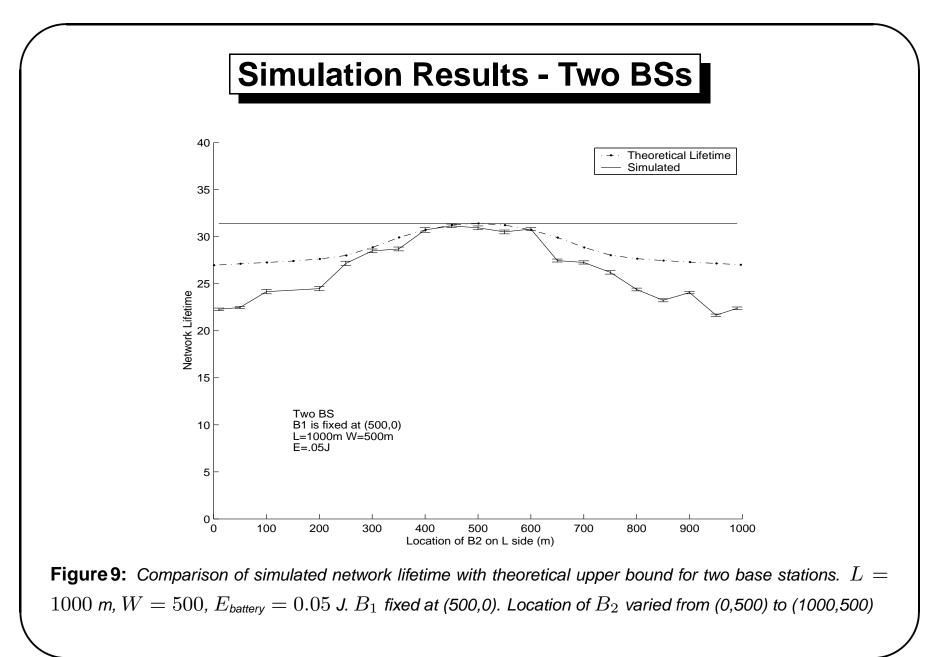
Orientation	NW life time	Optimum location		
	Upper Bound	of B_3		
	(# rounds)			
SSO	36.44	(152.6, 0)		
ASO	38.38	(0, 249.8)		

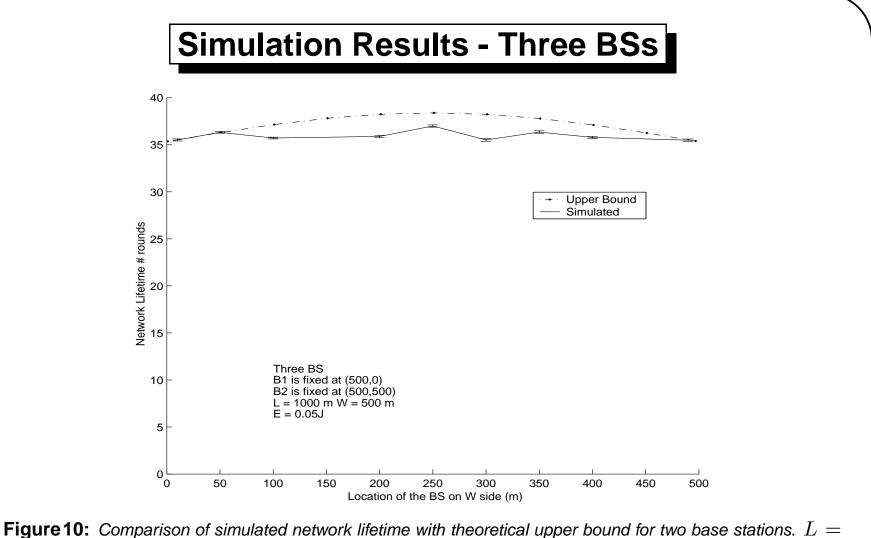
Table IV: Upper bounds on network lifetime and optimum base station locations for three base stations. B_1 and B_2 fixed at optimum locations obtained from solving two base stations problem. L=1000m. W=500m.

Performance Comparison of One, Two, Three BSs

No. of BS	NW life time	Optimum BS
	Upper Bound	Locations
	(# rounds)	
One BS	24.34	$B_1: (489.9, 0)$
Two BS	32.99	$B_1:(716.6,0)$,
(Jointly opt)		B_2 : (500, 282.6)
Two BS	31.41	$B_1: (500,0),$
(Indiv. opt)		$B_2: (502.5, 500)$
Three BS	38.38	$B_1: (500, 0),$
(Indiv. opt)		$B_2:(500,500)$
		$B_3:(0,249.8)$


TABLE V: Comparison of the upper bounds on network lifetime for one, two, and three base stations. L = 1000 m W = 500 m


 $L=1000~\mathrm{m}, W=500~\mathrm{m}.$


Simulation Results

- Simulated NW lifetime over several NW realizations at different BS locations were obtained
- Simulation parameters:
 - $N=50,\,L=1000$ m, W=500 m, $E_{battery}=0.5J$
 - Routing: A modified version of Minimum Cost Forwarding (MCF) protocol
 - MAC: Contention-free 'Self-organizing MAC for Sensor NW (SMACS)' protocol
 - Data packets are of equal length (each packet has 200 bits)
 - Time axis is divided into rounds; each round consists of 300 time frames
 - Each node generates 1 packet every 30 frames; i.e., 10 packets per round
 - NW lifetime: time until first node dies
 - Lifetime averaged over several realizations of the NW with 95% confidence for different number and locations of BSs

29

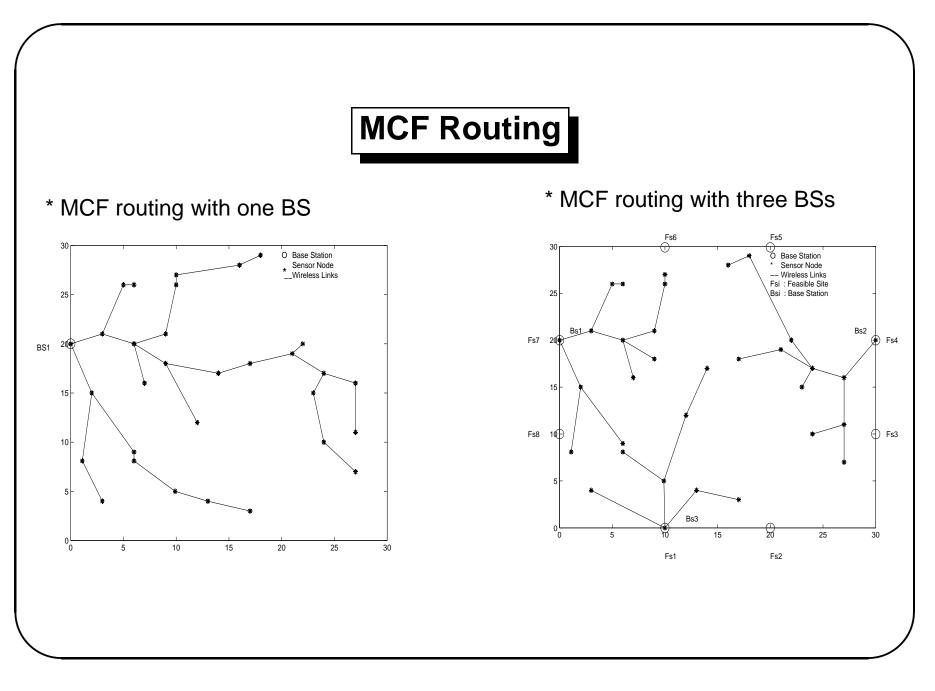


Figure 10: Comparison of simulated network lifetime with theoretical upper bound for two base stations. $L = 1000 \text{ m}, W = 500, E_{\text{battery}} = 0.05 \text{ J}. B_1$ fixed at (500,0). B_2 fixed at (500, 500). Location of B_3 varied from (0,0) to (0,500)

II. Energy Efficient BS Placement Algorithms

- Given
 - $K,K\geq 1~\mathrm{BSs}$
 - a set of *feasible* BS locations (sites) on the boundary of the sensor field
- Problem to solve
 - Choose the optimum locations for these K BSs from the set of feasible sites
- Approach
 - Divide the time axis into *rounds* of equal period
 - Placement of BSs is carried out at the beginning of each round and held for the entire duration of the round
 - A new placement is carried out in the beginning of the next round, and so on, till the end of network life
- We propose three energy efficient algorithms to determine the BS locations

- Assumptions
 - A set of sensor nodes V_s are uniformly distributed over a square sensor field
 - A set of feasible sites V_f (i.e., feasible BS locations) along the periphery of the sensor field is assumed
 - The graph G(V, E) denotes the sensor network where $V = V_s \cup V_f$ and $E \subseteq V \times V$ represents the set of wireless links
 - Wireless links between sensor nodes and a feasible site refer to the links that would exist if a base station is located at that particular site
 - Transmission range of all sensor nodes is same and fixed. $\eta=2$
 - MAC protocol: SMACS; Routing protocol: MCF routing
 - E_t, E_r : energy consumed for a packet to be Tx and Rx, respectively
 - NW lifetime: time till all nodes die or all live nodes are disconnected from all the feasible sites

BS Placement Algorithms

- Let
 - s_i denote the location of sensor node $i, i \in V_s$
 - f_i denote the location of feasible site $i, i \in V_f$
 - r denote the transmission range of each sensor node
 - RE_i denote the residual battery energy in sensor node *i* at the beginning of a round when the base station locations are computed.
- Three algorithms
 - Top- K_{max} algorithm
 - Maximizing the minimum residual energy (Max-Min-RE) algorithm
 - Minimizing the residual energy difference (Min-Diff-RE) algorithm

Top- K_{max} Algorithm

- Select those feasible sites (maximum K sites) whose nearest neighbour nodes have the highest residual energies
- Essentially a greedy algorithm. Advantage: Simplicity and less complexity
- Algorithm:
 - 1. For each feasible site $i \in V_f$, find the nearest sensor node n_i within the connectivity range r, i.e., for each $i \in V_f$ choose node $n_i \in V_s$ such that

$$|f_i - s_{n_i}| \le |f_i - s_j|, \,\forall j \in V_s, j \ne n_i$$

and

$$|f_i - s_{n_i}| \le r$$

- 2. Order these nearest neighbour nodes $\{n_i, i \in V_f\}$ in descending order of their residual energies, RE_{n_i} .
- 3. Select a maximum of K nodes from the top in this ordered list, and declare their corresponding nearest feasible sites as the solution.

Max-Min-RE Algorithm

- Top- K_{max} algorithm gives preference to nearest neighbours
 - likely that the nodes nearer to feasible sites are heavily loaded
- Max-Min-RE algorithm
 - attempts to distribute the load more evenly to different loads
 - # solutions possible are $P = \binom{N}{K}$.
 - Let this solution set be S.
 - Let the jth solution in the solution set S be T_j
 - choose the solution in which the 'heavily loaded node' has the maximum residual energy among all possible solutions
 - * 'heavily loaded node' in a solution: identified by the minimum residual energy among various nodes in a given solution (instead of 'minimum distance' as done in Top- K_{max} algorithm)

Max-Min-RE Algorithm

- Algorithm:
 - 1. Determine set $S_c \subseteq S$ such that $S_c = \{T_j : \forall i \in V_s \text{ there exists } p \in V_s \text{ such that } |s_i s_p| \leq r \text{ or } q \in V_f \text{ such that } |s_i f_q| \leq r \}.$
 - 2. For a given solution $T_j \in S_c$, determine the routes from all the sensor nodes to their respective base stations using MCF routing.
 - 3. For each node $i \in V_s$ compute the energy consumed at all nodes in the path in delivering a data packet from node i to its corresponding base station, and determine the resulting residual energies in all nodes.
 - 4. Find the minimum residual energy among all nodes in the jth solution

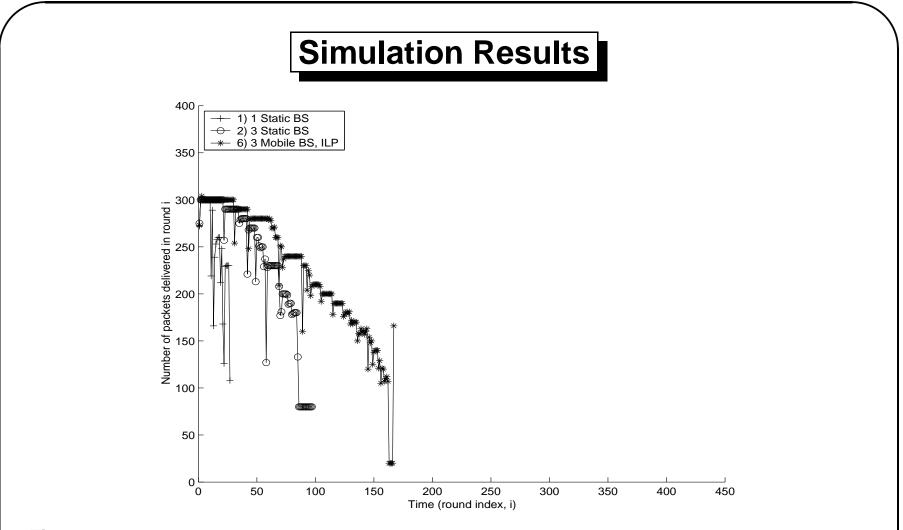
$$M_j = \min_{i \in V_s} \{RE_i\}$$

5. Choose the solution as

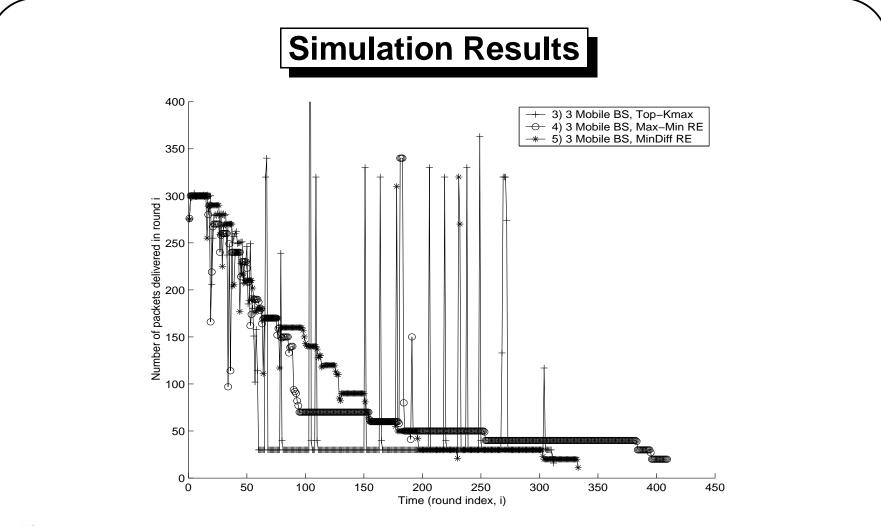
$$T_{Max-Min-RE} = \max_{j} \{ M_j : T_j \in S_c \}$$

Min-Diff-RE Algorithm

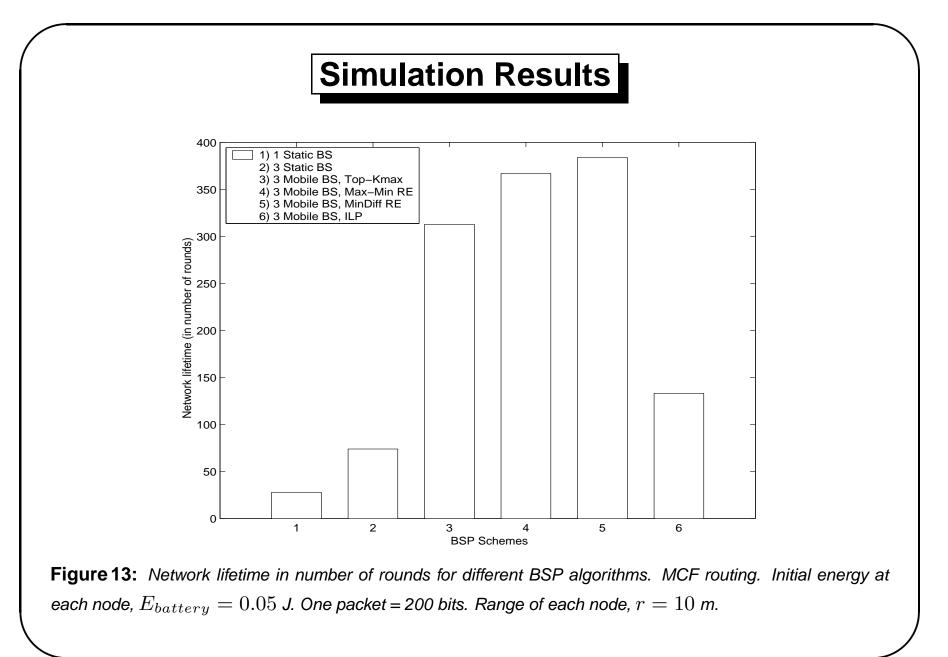
- Also attempts to evenly drain the nodes
- Algorithm:
 - 1. Perform steps 1) to 3) of the Max-Min-RE algorithm.
 - 2. Compute the metric


$$M_j = \max_{i \in V_s} \{RE_i\} - \min_{i \in V_s} \{RE_i\}$$

3. Choose the solution as


$$T_{MinDiff-RE} = \min_{j} \{ M_j : T_j \in S_c \}$$

Simulation Parameters


- \bullet A square sensor field of area 30 m \times 30 m
- Sensor nodes uniformly distributed in the sensing area
- Number of sensor nodes = 30
- Number of feasible sites = 8
 - coordinates of the feasible sites: $\{(0, 10), (0, 20), (10, 30), (20, 30), (30, 20), (30, 10), (20, 0), (10, 0)\}$
- Number of BSs = 3
- $E_{battery} = 0.05 J$, r = 10 m, $E_t = 0.1$ nJ/bit- m^2 , $E_r = 50$ nJ/bit
- Packet length = 200 bits, 1 round = 300 time frames
- Each node generates 1 packet every 30 frames (10 packets per round)

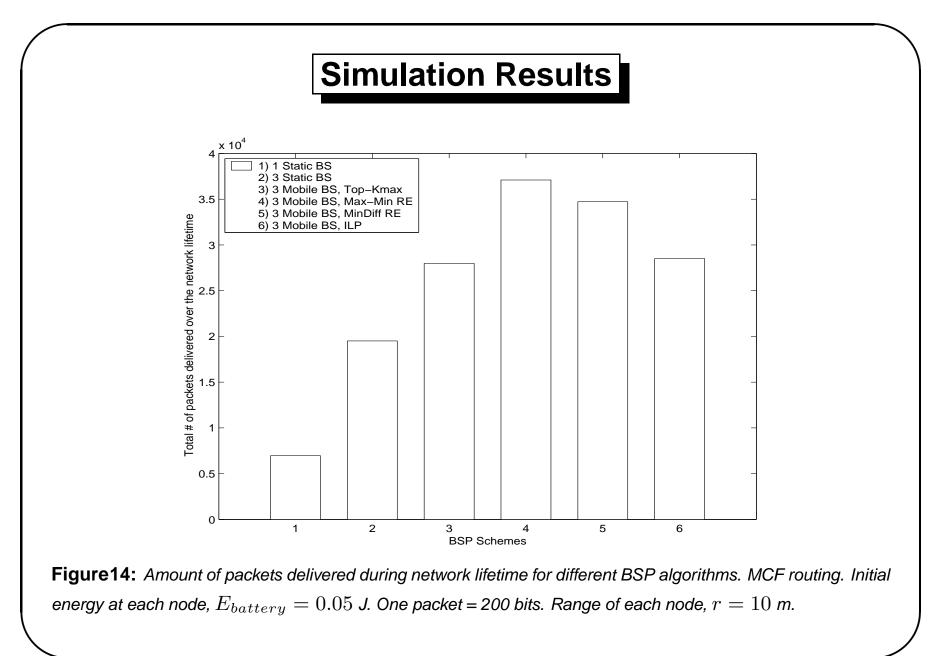
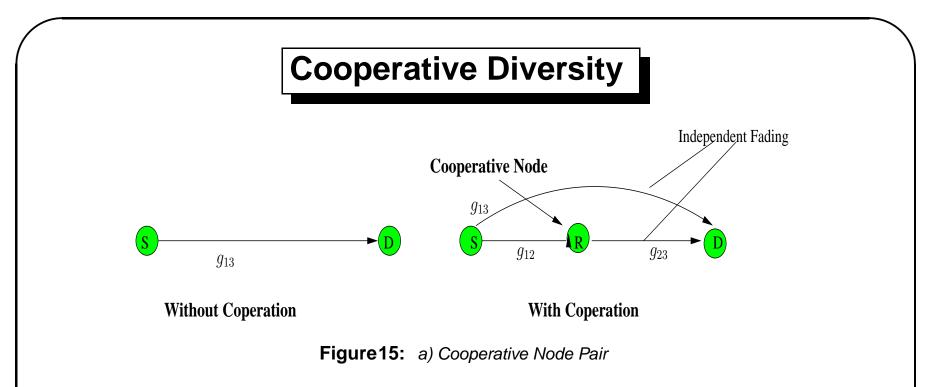


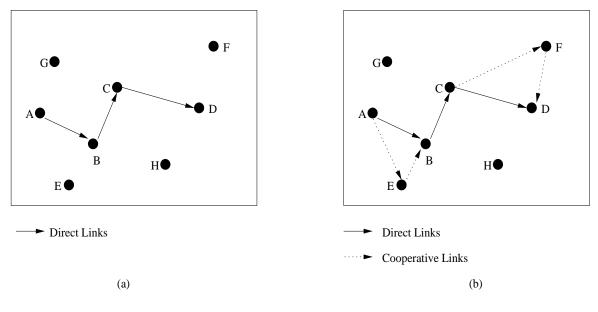
Figure 11: Traces of number of packets delivered per round as a function of time for schemes 1), 2), and 6). MCF routing. Initial energy at each node, $E_{battery} = 0.05$ J. One packet = 200 bits. Range of each node, r = 10 m.

Figure 12: Traces of number of packets delivered per round as a function of time for the proposed schemes 3), 4), and 5). MCF routing. Initial energy at each node, $E_{battery} = 0.05$ J. One packet = 200 bits. Range of each node, r = 10 m.


Simulation Results

BSP Algorithm	NW lifetime	Data delivered	
	in # rounds	in # packets	
	(95% confidence)	(95% confidence)	
1 BS	28 ± 0.009	$0.7\times10^4\pm0.34$	
3 BS, static	74 ± 0.25	$1.9 \times 10^4 \pm 14.8$	
3 BS, Top- K_{max}	312 ± 0.17	$2.8 \times 10^4 \pm 1.42$	
3 BS, Max-Min-RE	365 ± 0.87	$3.7 \times 10^4 \pm 42.9$	
3 BS, MinDiff-RE	380 ± 1.11	$3.5 \times 10^4 \pm 45.2$	
3 BS, ILP	130 ± 0.45	$2.7 \times 10^4 \pm 76.5$	

Table: Network lifetime and amount of data delivered for the various BSP schemes.


Cooperative Diversity in Sensor Network

- Diversity techniques are well known for mitigating the effects of multi-path fading and improving the reliability of communication in wireless channels.
- Transmit diversity schemes require more than one antenna at the transmitter.
- Cooperative communication
 - Enables single-antenna mobiles in a multiuser environment to share their antennas
 - Generate a virtual multiple-antenna transmitter that allows them to achieve transmit diversity.
 - Suitably applicable in wireless scenario eg. Sensor motes, Handheld mobile nodes.
 - Improved SNR results in reduced transmitter power requirement.

- Node S transmits a bit to D.
- Node R acts as a cooperative relay node for node S by retransmitting it to D.
- Participation of relay node may hurt the performance, particularly if S to R link is of poor quality.
- Use of relay node(s) for cooperation must be done judiciously.

Cooperative Diversity in Network Scenario

Cooperative Diversity Protocols

Protocol used in Cooperative Diversity

- Amplify and Forward
 - Relay nodes forwards an amplifi ed version of data. Noise is also amplifi ed.
- Decode and Forward
 - Relay nodes decodes and retransmits the data. Detection error is also propagated.
- Selection Relaying
 - Relay nodes forward only if it receives and can decode correctly.
- Incremental Relaying
 - Relay transmits only if requested by destination.

We have Used Amplify and Forward Protocol for further investigation.

Cooperative Diversity In Wireless Network

- Related Study
 - Laneman, Tse and Wornell, IEEE Trans. on Info. Theory, 2004
 - Sendonaris, Erkip and Aazhang, IEEE Trans on Comm., Nov'2001
 - Ribeiro, Cai and Giannakis IEEE Trans. on Wireless Comm.'2005
 - Herold and Zimmerman, SCIENCE DIRECT, Computer Network '2005
 - Shastry, Bhatia and Adve, Globecom'2005
- Our Investigation
 - Derived upper bound on lifetime using Cooperative diversity

Radio Energy Model Recap

• The required transmitted power is expressed,

$$P_t = SNR_{th} \, \frac{1}{C} N_0 \, d^2$$

Factor C includes antenna propagation characteristics

$$C = \left(\frac{\lambda}{4\pi}\right)^2 \frac{G_t G_r}{L}$$

 N_0 = AWGN noise power , d= link distance , SNR_{th} = received thresold SNR for proper decoding

• Received thresold SNR depends on receiver characteristcs

Radio Energy Model Recap

Energy model by Heinzelman -2000 (AWGN)

• Receiving

$$E_{rx} = \alpha_{12}$$

• Transmitting

$$E_{tx} = \alpha_{11} + \alpha_2 d^{\eta}$$

• Energy spent in Relaying 1 Bit

$$E_{relay}(d) = E_{rx} + E_{tx}$$
$$= \alpha_{12} + \alpha_{11} + \alpha_2 d^{\eta}$$
$$= \alpha_1 + \alpha_2 d^{\eta}$$

 α_{11} and α_{12} are energy spent in transmit and receive electronics.

 α_2 is energy spent in transmit electronics. It is a function of threshold SNR.

• Where,

$$\alpha_2 = (SNR_{th} \frac{1}{C} N_0) \frac{1}{r}$$

Radio Energy Model for Fading

Energy consumed in relaying 1 Bit

• Direct relaying (Rayleigh Fading)

$$E_{relay}(d) = E_{tx} + E_{rx}$$
$$= \alpha_{1_{fad}} + \alpha_{2_{fad}} d^{\eta}$$

• Energy spent in receiving depends only on Tx,Rx electronics. Hence,

$$\alpha_{1_{fad}} = \alpha_1 \tag{1}$$

- α_2 depends on Tx amplifier and channel characteristics
- BER can be expressed for BPSK ,

$$\overline{P_e} = \frac{1}{2} \left(1 - \sqrt{\frac{\overline{SNR}}{1 + \overline{SNR}}} \right)$$
$$\overline{P_e} \approx \frac{1}{4\overline{SNR}}$$

Radio Energy Model for Fading

• For Direct relaying (Fading channel)

$$P_t = \frac{N_0}{4\sigma^2} \frac{1}{C\overline{P_e}} d^\alpha \qquad W$$

Hence,

$$\alpha_{2fad} = \left(\frac{N_0}{4\sigma^2} \frac{1}{C\overline{P_e}}\right) \frac{1}{r} \qquad J/bit/m^2$$

r = no. of bits transmitted per second

Minimum Energy Relay For Direct Transmission

• Energy dissipation rate of relaying a bit over distance D can be bounded as

$$P_{\mathsf{link}}(D) \geq \left(\alpha_{1fad} \frac{\eta}{\eta - 1} \frac{D}{d_{\mathsf{char}_{fad}}} - \alpha_{12_{fad}}\right) r$$

with equality iff D is an integral multiple of $d_{\mathrm{char}_{fad}}$

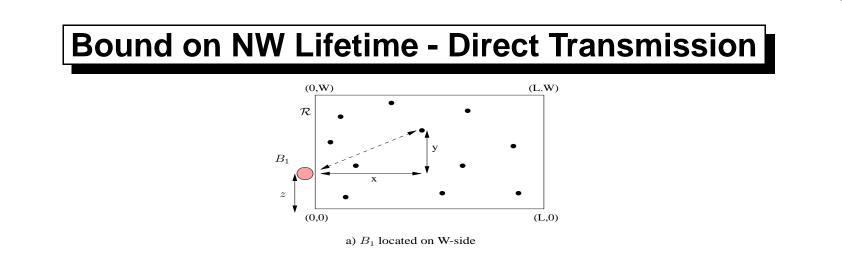
• Power dissipated in the network is always larger than or equal to the sum of this $P_{\rm link}(D)$ and the power for sensing, i.e.,

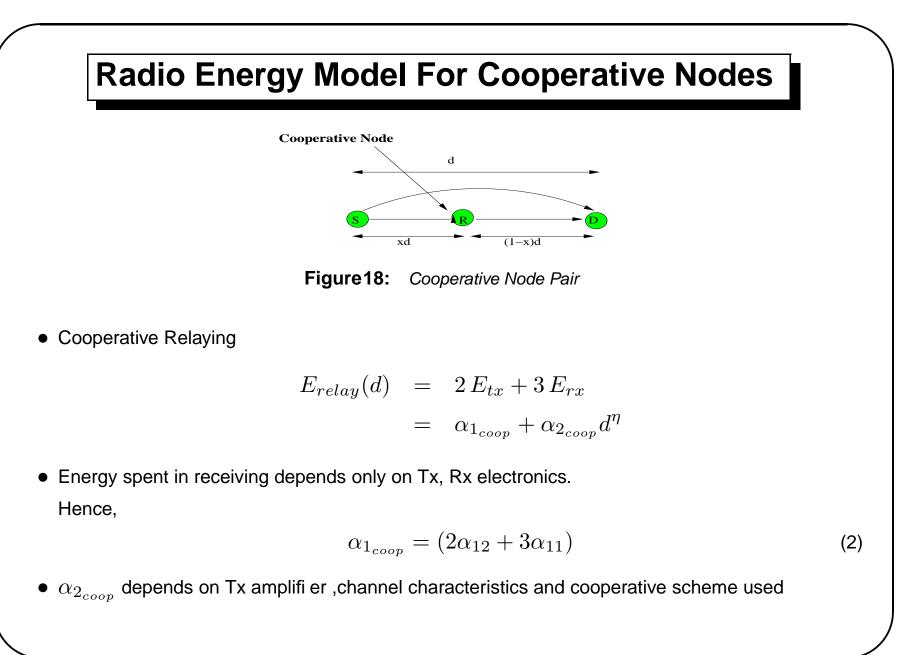
$$P_{\rm nw} \ge P_{\rm link}(D) + P_{sense} = \left(\alpha_{1_{fad}} \frac{\eta}{\eta - 1} \frac{D}{d_{\rm char_{fad}}} - \alpha_{12_{fad}}\right)r + \alpha_3 r$$

Where,

$$d_{\rm char} = \sqrt[\eta]{\frac{\alpha_{1_{fad}}}{\alpha_{2_{fad}}(\eta-1)}}$$

• As an approximation, sensing power can be ignored since the power for relaying data dominates.




Figure 17: Data is transported to B_1 through multihop communication without Cooperative Diversity (Direct)

- Let $P_{\rm NW}^{(z)}$ denote the energy dissipation in the entire NW for a given BS z
- \bullet Assuming uniform distribution of N nodes

$$P_{\rm NW}^{(z)} = N \int \int_{\mathcal{R}} P_{\rm nw}(x,y) \, \frac{1}{WL} \, dx \, dy.$$

• By minimum energy relay argument, $P_{\text{nw}}(x,y) \ge P_{\text{link}}\left(\sqrt{x^2 + y^2}\right)$, and hence

$$\begin{aligned} P_{\text{NW}}^{(z)} &\geq \frac{N}{WL} \int_{-z}^{W-z} \int_{0}^{L} P_{\text{link}} \left(\sqrt{x^2 + y^2} \right) \, dx \, dy \\ &\geq r \alpha_1 \, \frac{\eta}{\eta - 1} \, \frac{N}{WL} \int_{-z}^{W-z} \int_{0}^{L} \frac{\sqrt{x^2 + y^2}}{d_{\text{char}_{fad}}} \, dx \, dy \end{aligned}$$

Radio Energy Model For Cooperative Nodes Contd.

• Hence for Amplify and Forward cooperation

$$\overline{P_e} = \frac{3(K+1)^2}{4k^2} \left(\frac{1}{\overline{\gamma_{12}}} + \frac{1}{\overline{\gamma_{23}}} + \frac{1}{\overline{\gamma_{13}}}\right)$$

where $\gamma_{ij} = \frac{P_c}{N_0} g_{ij}$ and $g_{ij} = d^{-\alpha} |a_{ij}|^2$

$$P_c = N_0 \frac{d^{\eta}}{C \,\overline{\sigma^2}} \sqrt{\frac{3}{16}} \sqrt{x^{\eta} + (1-x)^{\eta}} \sqrt{\frac{1}{\overline{P_e}}}$$

• The optimal location of relay node obtained by $\frac{dP_c}{dx} = 0$ is $x = \frac{1}{2}$ for $\eta = 2$.

• On comparing we get,

$$\alpha_{2coop} = 2 * \left(N_0 \cdot \frac{d^{\eta}}{C \,\overline{\sigma^2}} \sqrt{\frac{3}{16} \, \frac{1}{\sqrt{2}}} \sqrt{\frac{1}{\overline{P_e}}} \right) \frac{1}{r}$$

- Thus energy spent by an intermediate node with cooperative relay node can be expressed in terms of the parameter $\alpha_{1_{coop}}$ and $\alpha_{2_{coop}}$.
- Again, we get the expression of $E_{relay}(d)$ in similar form as of part I. Hence we can apply similar analysis as of part I to obtain the upper bound on the lifetime.

Upper Bound Using Cooperative Diversity

Hence following the similar analysis steps done in part I, the upper bound can be derived as below:

• Power dissipated in the network is always larger than or equal to the sum of this $P_{\text{link}}(D)$ i.e.,

$$P_{\rm nw} \ge P_{\rm link}(D) + P_{sense} = \left(\alpha_{1_{coop}} \frac{\eta}{\eta - 1} \frac{D}{d_{\rm char_{coop}}} - \alpha_{12_{coop}}\right)r + \alpha_3 r$$

Where,

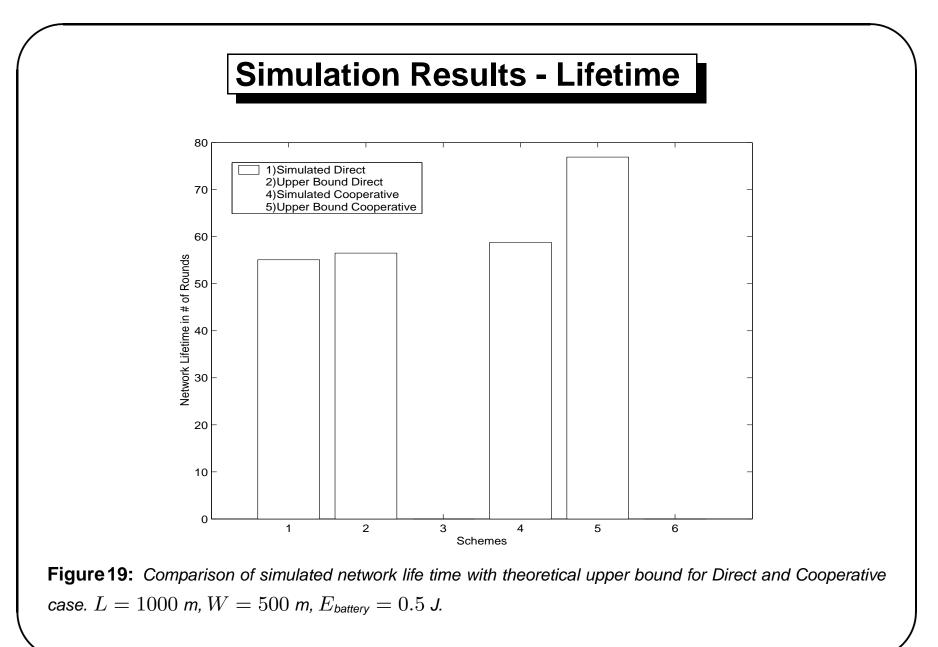
$$d_{\text{char}_{coop}} = \sqrt[\eta]{\frac{\alpha_{1_{coop}}}{\alpha_{2_{coop}}(\eta - 1)}}$$

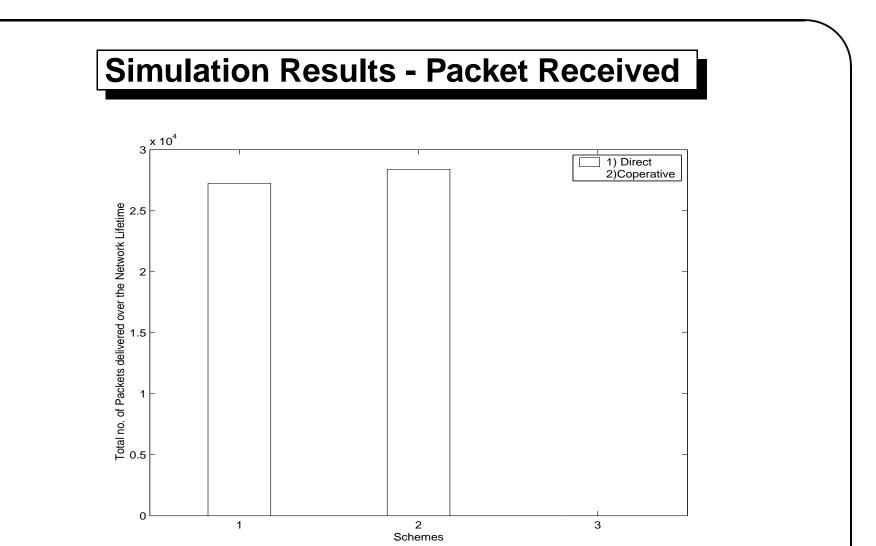
• The Network Lifetime can be Bounded using similar steps,

$$P_{\rm NW}^{(z)} \ge N \int \int_{\mathcal{R}} P_{\rm link} \left(\sqrt{x^2 + y^2} \right) (x, y) \frac{1}{WL} \, dx \, dy.$$

Upper Bound on the lifetime

• Upper Bound on the Lifetime obtained are tabulated below.


Case	Lifetime (in # of rounds)	
Direct (without Cooperative)	55	
Using Cooperative Diversity	76	


• The parameter values are tabulated below

Parameter	$\alpha_{1_{fad}}$	$lpha_{2_{fad}}$	$lpha_{1_{coop}}$	$lpha_{2_{coop}}$
values	60	2.31	150	0.34
	nJ/bit	$pJ/bit/m^2$	nJ/bit	$pJ/bit/m^2$

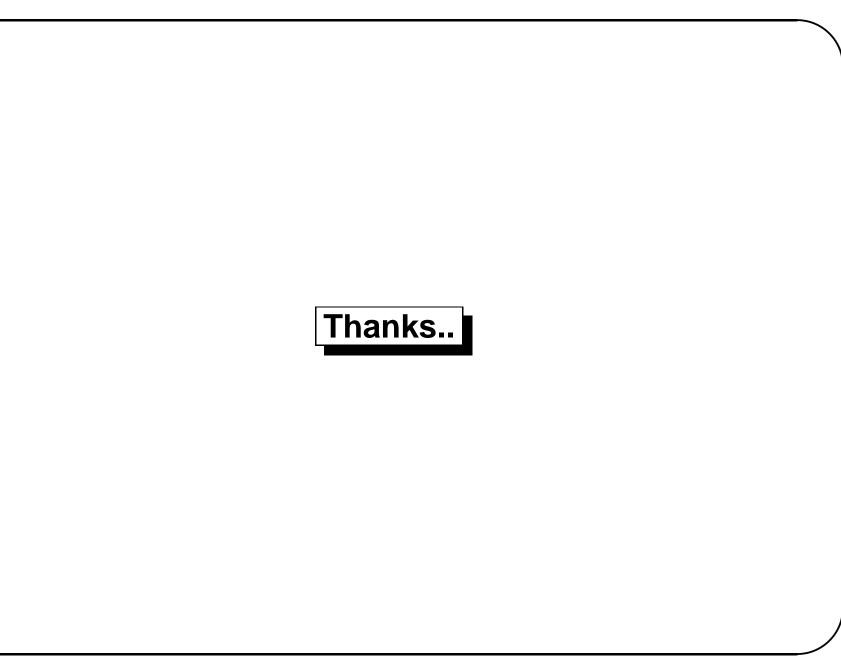
Simulation Setup

- Simulated NW lifetime over several NW realizations
- Simulation parameters:
 - N = 50, L = 1000 m, W = 500 m, $E_{battery} = 0.5J$
 - Routing: MHR (Minimum Hop Routing) is protocol
 - MAC: Contention-free 'Self-organizing MAC for Sensor NW (SMACS)' protocol with a provision for handling cooperative packets
 - Data packets are of equal length (each packet has 200 bits)
 - Time axis is divided into rounds; each round consists of 300 time frames
 - Each node generates 1 packet every 30 frames; i.e., 10 packets per round
 - NW lifetime: time until first node dies
 - Lifetime averaged over several realizations of the NW with 95% confi dence for different number

Figure 20: Comparison of the no. of Packets Received for Direct and Cooperative case over the duration of Lifetime. $L = 1000 \text{ m}, W = 500 \text{ m}, E_{\text{battery}} = 0.5 \text{ J}.$

Summary

- In Multiple Base Station scenario
 - Upper Bound is derived which are validated with the help of simulation
 - Optimal locations of base stations are obtained and supported by simulation
 - Shown analytically that deploying multiple base stations extends lifetime
- In Mobile Base Station scenario
 - Algorithms are proposed for base station placement exploiting the residual node energy.
 Simulation results shows the performance of proposed algorithms are beneficial to some extent in terms of
 - * Lifetime extension
 - * More number of packet delivery
- Use of cooperative diversity in sensor network can enhance network lifetime as well as number of succesful packet delivery.



In future work we can view some potential extensions,

- Study of cooperative diversity in sensor network using other protocols (Decode and Forward etc.).
- Optimizing the relay location to improve lifetime.
- Study of cooperative diversity in presence of multiple base station.

Publications From This Thesis

- 1. A. P. Azad and A. Chockalingam, "Mobile base stations placement and energy aware routing in wireless sensor networks," accepted in *IEEE WCNC'2006*, Las Vegas, April 2006.
- 2. A. P. Azad and A. Chockalingam, "Energy efficient mobile base stations placement algorithms in wireless sensor networks," accepted in *NCC'2006*, IIT, New Delhi, January 2006.
- 3. A. P. Azad and A. Chockalingam, "Upper Bounds on the lifetime and optimal locations of multiple base stations in wireless sensor networks," *being submitted to IEEE GLOBECOM*'2006, San Francisco, 2006.

